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1 Introduction

The analysis of surrogate reactions, an indirect technique for determining cross sections on
unstable nuclei, relies heavily on compound-nuclear reaction models. The purpose of this
tutorial is to provide an introduction to the principal models, based on the Hauser-Feshbach
and Weisskopf-Ewing formalisms, and to show how they are applied to surrogate reactions.
The outline of the tutorial is the following:

• Section 2 gives a simple derivation of the Hauser-Feshbach formula based on an energy
average over well-separated Breit-Wigner resonances. This derivation is strictly correct
only at low energies where the resonances do not overlap; i.e.

< Γ > /D � 1, (1)

where < Γ > is the average total width of the resonances of a given spin J , and
D is the average spacing of these resonances. The resultant expression shows under
what circumstances the compound nuclear assumption (independence of formation and
decay) is valid. More complicated derivations of statistical reaction theory for cases
where resonances overlap are available (e.g. Kawai, Kerman, and McVoy (KKM)).

• Section 3 discusses the conditions in which the Hauser-Feshbach formula, which rigor-
ously conserves total angular momentum and parity, reduces to the simpler and earlier
Weisskopf-Ewing result in which these quantities are not conserved.

• Section 4 shows how the Hauser-Feshbach and Weisskopf-Ewing formulas are applied
in making indirect measurements of cross sections by the surrogate technique. A
procedure for modifying existing Hauser-Feshbach codes so that they are suitable for
analysis of surrogate reactions is indicated.
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2 Derivation of the Hauser-Feshbach formula

We begin with the expression for a reaction from channel a to channel b proceeding through
well-separated compound nuclear resonances of spin J , expressed as a sum over Breit-Wigner
resonances:

σJ
ab(E) = πλ̄2ωJ

a

∑

λ

ΓλaΓλb

(E −Eλ)2 + 1
4
Γ2

λ

, (2)

where E is the incident energy, λ̄ is the reduced wavelength in the incident channel (inverse of
the wave number k), ωJ

a is a statistical factor, Γλa and Γλb are the partial widths of resonance
λ in the incident and exit channels, Eλ is the energy of the resonance and Γλ is its total
width. The statistical factor is

ωJ
a =

2J + 1

(2ia + 1)(2Ia + 1)
(3)

where ia and Ia are the projectile and target spins; for incident photons the factor (2ia + 1)
is replaced by 2. The total width is the sum of the partial widths in all channels,

Γλ =
∑

c

Γλc. (4)

In writing the cross section as a sum over resonances we have ignored a smooth background
amplitude and its interference with the resonances. This background is associated with direct
reactions and is not of interest here. We have also suppressed explicit reference to the parity.

Since Hauser-Feshbach is a theory for the energy-averaged cross section, we now average
Eq. 2 over an energy interval ∆ large enough to contain many resonances; that is, D/∆ � 1,
where D is the average spacing of resonances of spin J . To do this, we note that the energy
integral over a single term in the sum in Eq. 2 is

∫ ∞

0
dE

ΓλaΓλb

(E − Eλ)2 + 1
4
Γ2

λ

= 2π
ΓλaΓλb

Γλ
. (5)

Taking the energy average of Eq. 2 then yields

〈
σJ

ab(E)
〉

= πλ̄2ωJ
a

2π

D

〈
ΓaΓb

Γ

〉
. (6)

Note that this expression does not contain the energy averages of the individual widths,
but rather the average of the combination ΓaΓb/Γ. This distinction is important because in
general there are correlations between the widths. Accordingly, we define a width fluctuation
factor Wab by 〈

ΓaΓb

Γ

〉
= Wab

〈Γa〉 〈Γb〉
〈Γ〉 , (7)

so that the energy-averaged cross section may be expressed as

〈
σJ

ab(E)
〉

= πλ̄2ωJ
a

2π

D

〈Γa〉 〈Γb〉
〈Γ〉 Wab. (8)
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In the limit < Γc > /D � 1 appropriate to the present discussion, calculation of Wab is
straightforward if we assume that the partial widths in each channel are described by a
Porter-Thomas distribution. If this condition is not satisfied a more advanced treatment is
required (e.g. KKM).

Next, we relate the transmission coefficients obtained from an optical model to the energy
average of the partial widths appearing in the Breit-Wigner formula. We sum Eq. 2 over
outgoing channels b to yield a total reaction cross section,

σJ
a (E) =

∑

b

σJ
ab(E) = πλ̄2ωJ

a

∑

λ

ΓλaΓλ

(E − Eλ)2 + 1
4
Γ2

λ

, (9)

in which the total width now appears in the resonance numerators. Taking the energy
average of this expression yields

〈
σJ

a (E)
〉

= πλ̄2ωJ
a 2π

〈Γa〉
D

. (10)

For simplicity we assume spinless projectile and target, so that the statistical factor ωJ
a is

just (2l+1), where l is the orbital angular momentum, and l is sufficient to define the channel
a. The reaction cross section is then

〈σl(E)〉 = πλ̄2(2l + 1) 2π
〈Γl〉
D

. (11)

The optical model also yields a value for the energy-averaged reaction cross section, based
on absorption in a complex potential instead of an explicit resonance treatment. The optical
model value for the reaction cross section for orbital angular momentum l is

〈σl(E)〉optical = πλ̄2(2l + 1) Tl, (12)

where Tl is the calculated transmission coefficient. Comparison of the above two expressions
yields the key result

Tc = 2π
〈Γc〉
D

, (13)

where in the general case c is the complete set of angular-momentum quantum numbers that
define a channel, not necessarily limited to the orbital angular momentum. This result is
valid in the limit < Γc/D >� 1, and again a more complicated treatment is necessary if
this condition is not satisfied. In particular, transmission coefficients must lie between 0 (no
absorption) and 1 (complete absorption), whereas there is no upper limit for < Γc > /D.
A reasonable ansatz that is frequently used to enforce physical limits on Tc (but without
rigorous justification) is

Tc = 1 − exp

(
−2π

〈Γc〉
D

)
. (14)

By using Eq. 13 to replace the widths by transmission coefficients in Eq. 8 and summing
over total angular momentum J , we may express the energy-averaged cross section as

σHF
ab (E) =

∑

J

〈
σJ

ab(E)
〉

= πλ̄2
∑

J

ωJ
a

TaTb∑
c Tc

Wab, (15)
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which is the Hauser-Feshbach formula with width-fluctuation corrections.
In the interests of simplicity we have ignored several important details of angular mo-

mentum coupling and parity conservation. To include these features, we recognize that there
is also a sum over the two parities of the compound system, that there are additional sums
over angular quantum numbers required to define each channel, and that all sums (except
the ones over total angular momentum and parity) are restricted by angular momentum and
parity conservation. The complete expression is

σHF
ab (E) = πλ̄2

∑

JΠ

ωJ
a

∑
{ja} Ta

∑
{nb}

∑
{jb} Tb Wab∑

c

∑
{nc}

∑
{jc} Tc

, (16)

where Π is the parity of the compound system and {jc} represents the set of angular momenta
required to specify the channel. For spinless particles {jc} is l, the orbital angular momentum.
For spin 1/2 particles {jc} is l plus an additional quantum number, either the channel spin
s or j, which is obtained by coupling the orbital angular momentum to the particle spin.
For photons {jc} represents the multipolarity. The sum on c in the denominator represents
the sum over the various 2-body partitions of the compound system for which decay is
energetically possible. {nc} is the set of states in the residual nuclei, and the notation

∑
{nc}

implies a sum over the discrete states and an integral over a continuous spectrum represented
by a level density. In the denominator

∑
{nc} sums over all final states in the partition c that

are energetically reachable. In the numerator
∑

{nb} is a sum over whatever final states are
intended; this could be as little as a single state or as much as the complete set of energetically
reachable states. The factor Wab is inside all sums in the numerator, since it depends on the
angular momenta in both channels. The complete expression for the reaction cross section,
which is the generalization of Eq. 12, is

σreac
a (E) = πλ̄2

∑

JΠ

ωJ
a

∑

{ja}
Ta. (17)

Because of the width fluctuation corrections, the above Hauser-Feshbach expressions do
not factor into a formation cross section in channel a and a decay probability into chan-
nel b (for each value of total angular momentum and parity). When width correlations
are negligible Wab = 1, and then factorization is possible; this is the justification for the
compound-nuclear hypothesis (due to Niels Bohr) of independence of formation and de-
cay, which holds separately for each value of total angular momentum and parity in the
Hauser-Feshbach theory. While this subject is very complicated, some simple observations
are possible:

• Except for elastic scattering, width fluctuation corrections are small when there are
many open channels.

• For elastic scattering, channels a and b are the same, and there are strong correlations
between incident and exit channels. When many channels are open this leads to an
enhancement of the elastic cross section by a factor of 3 in the small < Γa/D > limit
considered here, and a factor of 2 in the opposite limit < Γa/D >� 1.
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• Whereas elastic scattering is enhanced, inelastic and reaction cross sections are depleted
by the width fluctuations. The depletion rarely exceeds 10 to 20%, even at fairly low
energies (below approximately 2 MeV). As channels open up with increasing energy the
width fluctuation correction quickly becomes unimportant except for elastic scattering.

Often we are interested in reactions leading to excited states of the final nucleus and want
to sum over all states of the final nucleus within an energy interval dEb around an excitation
energy Eb. This implies a sum over all final spins Ib and both parities Πb. The final states
are characterized by a level density ρ(Eb, Ib,Πb). In this case we specialize Eq. 16 as

dσHF
ab

dEb
= πλ̄2

∑

JΠ

ωJ
a

∑
{ja} Ta∑

c

∑
{nc}

∑
{jc} Tc

∑

IbΠb

∑

{jb}
Tb ρ(Eb, Ib,Πb), (18)

where we have dropped the width fluctuation correction, which is usually negligible in this
case. The transmission coefficients Tb are evaluated at an energy for the outgoing particle
that leads to an excitation energy Eb in the residual nucleus.

A variant of the Hauser-Feshbach formula is useful in the analysis of surrogate reactions
and in the study of compound-nuclear reactions in which multiple particles are emitted
sequentially from an initial compound nucleus. We temporarily ignore width fluctuation
corrections, so that independence of formation and decay applies. Then a generalized Hauser-
Feshbach expression is obtained by writing Eq. 16 as

Yb =
∑

JΠ

FJΠ(Ecmpd) Gb
JΠ(Ecmpd), (19)

where FJΠ(Ecmpd) represents the population of compound nucleus levels of spin J and parity
Π at excitation energy Ecmpd, and Gb

JΠ(Ecmpd) is the branching ratio of this population into
channel b; i.e.,

Gb
JΠ =

∑
{nb}

∑
{jb} Tb∑

c

∑
{nc}

∑
{jc} Tc

. (20)

For the 2-step Hauser-Feshbach reaction of Eq. 16, FJΠ is the formation cross section given
by the incident-channel transmission coefficients, and Yb is the cross section for production of
channel b. However, we may replace this description of FJΠ by any other process that yields
a well-defined compound nucleus. For a sequential multistep reaction, FJΠ is the population
produced by earlier stages in the reaction, and Yb is the population in channel b produced by
the current stage. For a surrogate reaction, the population FJΠ characterizes the distribution
of highly-excited final states produced in another reaction such as (p, p′) or (3He,α); these
states subsequently decay according to the branching ratio Gb

JΠ. Since the transmission
coefficients in the numerator of the branching ratios also appear in the denominator, width
fluctuation corrections should be incorporated in the above expression. If formation of the
compound nucleus represented by FJΠ is entirely independent of its decay, width fluctuation
corrections can be applied to the branching ratios alone, without invalidating independence
of formation and decay. The multistep reactions and surrogate reactions mentioned here are
such cases. Otherwise the full expression of Eq. 16 must be used.
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Finally, we note that all of the expressions above have been derived for angle-integrated
cross sections. There are corresponding Hauser-Feshbach expressions for differential cross
sections, which differ from the above by the inclusion of the appropriate angular momentum
coupling coefficients. When a spatial direction is defined, such as by the incident particle
in a standard 2-step Hauser-Feshbach reaction, the energy averaging over the underlying
resonances implies an angular distribution that is symmetric about 90 degrees with respect
to the spatial direction. The same averaging procedure shows that there are no polarization
effects. These results may be used to distinguish between direct and compound-nuclear
reactions, since direct reactions are asymmetric (usually peaked in the forward hemisphere)
and frequently show strong polarization effects.

3 The Weisskopf-Ewing formula

In this section we show conditions under which the conservation of total angular momentum
and parity in the Hauser-Feshbach expression can be neglected. The cross sections and
branching ratios can then be expressed entirely in terms of reaction cross sections, without
requiring the explicit use of transmission coefficients. The key approximation that leads to
this simplification is that the branching ratios Gb

JΠ in Eq. 20 are independent of J and Π.
The following conditions are sufficient to achieve this:

• The energy of the compound nucleus is sufficiently high that nearly all channels into
which it can decay are dominated by integrals over the level density. The fraction of
decays proceeding to discrete states must be small.

• Width fluctuations are unimportant. This condition will be satisfied if the previous
one is.

• Transmission coefficients are independent of the spin Ic of the states reached in channel
c. This condition is well satisfied, since the dependence of transmission coefficients on
target spin is known to be small in nearly all cases.

• The spin dependence of the level density is proportional to (2Ic + 1) and does not
depend on parity. The proportionality to (2Ic + 1) is valid for spins that are not too
large, since the level density can be factored as

ρc(Ec, Ic,Πc) = ρ′
c(Ec) (2Ic + 1) exp




−

(
Ic + 1

2

)2

2σ2
c (Ec)





, (21)

where σc is the spin cutoff parameter for the residual nucleus in channel c. Typical
values for σc are 4–8. Although the proportionality to (2Ic + 1) is necessary for a
rigorous derivation of the Weisskopf-Ewing reaction model from the Hauser-Feshbach
formula, the Weisskopf-Ewing result is still approximately correct at higher spins. This
will be commented upon later. As for the parity, statistical-mechanical techniques for
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calculating the parity dependence of level densities indicate that this dependence is
very weak at sufficiently high excitation energies that the first condition above is valid.

If the branching ratios Gb
JΠ are indeed independent of J and Π, as we will show when the

above conditions are satisfied, then the Hauser-Feshbach expression Eq. 19 simplifies to the
Weisskopf-Ewing form

Yb = F(Ecmpd) Gb(Ecmpd), (22)

where
F(Ecmpd) =

∑

JΠ

FJΠ(Ecmpd). (23)

This expression exhibits independence of formation and decay, unrestricted by conservation
of total angular momentum and parity. The integrals in the denominator of Gb extend over
the kinematically accessible region of the level spectrum in the residual nucleus in each
channel c appearing in the denominator.

The lack of dependence of Gb
JΠ on the parity Π of the compound system follows from the

assumption that the final-state level densities are independent of parity and the fact that
both final-state parities are summed over. We therefore drop the parity index in Gb

JΠ.
To show that Gb

J is independent of J , we write the branching ratio as

Gb
J =

Ib
∑

c

∫ Emax
c

0 dEc Ic

, (24)

where Ic is a sum over transmission coefficients and level densities for channel c; the sum
is over all final-state spins Ic and over all values of the quantum numbers for the outgoing
particle that satisfy angular momentum conservation. For simplicity, we consider only spin-
less particles with transmission coefficients T c

l characterized by orbital angular momentum
l. The final results do not depend on this restriction. In this case, the quantities Ic are

Ic =
∞∑

Ic=Imin
c

J+Ic∑

l=|J−Ic |
T c

l (εc) ρc(Ec, Ic), (25)

where εc is the kinetic energy of the outgoing particle that leaves an excitation energy Ec in
the residual nucleus, and Imin

c is 0 or 1/2, according to whether the residual nucleus is even
or odd mass, respectively. We now assume the level density may be factorized as (2Ic + 1)ρ′

c,
and interchange the two sums with the help of the function ∆(j1, j2, j3), defined as 1 if the
three angular momenta satisfy the vector relationship ~3 = ~1 + ~2 and 0 otherwise. Then

Ic = ρ′
c(Ec)

∑

lIc

T c
l (εc) (2Ic + 1) ∆(J, l, Ic), (26)

where restrictions on l and Ic are provided by the ∆ function. We carry out the sum on Ic,
using the identity ∑

Ic

(2Ic + 1) ∆(J, l, Ic) = (2J + 1)(2l + 1), (27)
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which is easily shown by counting magnetic substates in the coupled and uncoupled systems
represented by ~Ic = ~l + ~J . Then Ic becomes

Ic = (2J + 1) ρ′
c(Ec)

∞∑

l=0

(2l + 1) T c
l (εc). (28)

This completes the demonstration that Gb
J is independent of J , since each term in both

numerator and denominator in Eq. 24 contains the factor (2J + 1), which therefore cancels.
To reach the traditional Weisskopf-Ewing form for Gb, we note that (see also Eq. 12) the

reaction cross section is given by

σreac
c = πλ̄2

c

∞∑

l=0

(2l + 1) T c
l (Ec). (29)

By using this relation and Eq. 28 we can write the branching ratio as

Gb =
k2

bσ
reac
b (εb)ρ

′
b(Eb)

∑
c

∫ Emax
c

0 dEc k2
c σ

reac
c (εc)ρ′

c(Ec)
, (30)

where the wave number kc is the inverse of the reduced wavelength λ̄c in channel c. This is
the Weisskopf-Ewing expression for the branching ratio. The quantities σreac

c , often called
inverse cross sections, can usually be obtained from optical model calculations or inferred
from experiment. The inverse cross section represents the cross section for absorption of the
ejected particle as if it were incident on the excited nucleus in channel c, and it is assumed
that the cross section is the same for absorption on any state in the nucleus in channel c.
At sufficiently high energies σreac

c is approximately πR2 (the area of the nucleus) for any
ejected particle except for photons. For low-energy neutrons, σreac

c is proportional to 1/
√

εc.
We repeat that the Weisskopf-Ewing expression and its lack of reference to total angular
momentum and parity conservation is valid for any type of ejected particle. The derivation
for nonzero spin is more tedious but contains the same essential steps that were shown here,
in particular the factoring out of (2J + 1) in the expression for Ic. For a two-step reaction
reaction from channel a to channel b, Eq. 17 shows that the sum over transmission coefficients
in Eq. 23 for F is σreac

a , so that the complete expression for the cross section becomes

dσWE
ab

dEb

= σreac
a

k2
b σ

reac
b (εb)ρ

′
b(Eb)

∑
c

∫ Emax
c

0 dEc k2
cσ

reac
c (εc)ρ′

c(Ec)
, (31)

which is the Weisskopf-Ewing counterpart to Eq. 18.
As noted earlier, the Weisskopf-Ewing formalism is useful even when the compound-

nuclear spin J is comparable to or greater than the spin cutoff parameters σc. A qualitative
argument shows why this should be so, even though this result cannot be derived rigorously
from the Hauser-Feshbach formalism. Starting with compound spin J , the distribution of
spins Ic in each channel c is spread roughly evenly about J , since it is given by the various
values of the coupling of J to the angular momentum of the outgoing particle. If we replace
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Ic by an average value J in the exponential factor in the level density expression of Eq. 21
and assume the spin cutoff factor is approximately the same in all channels, this factor
cancels because it appears in all terms in the numerator and denominator of Gb

J , and the
Weisskopf-Ewing result is obtained.

To finish the description of the Weisskopf-Ewing formula, we note that the density ρ′

is not quite the total level density (i.e., the level density summed over all spins and both
parities). The relation between the total level density ρtot and ρ′ is

ρtot
c (Ec) = 4 σ2

c (Ec) ρ′
c(Ec). (32)

The energy dependence of the spin cutoff factor is weak and varies slowly with mass number.
Thus it is a reasonable approximation to use ρtot rather than ρ′ in Eqs. 30 and 31 since the
factors 4σ2 are nearly the same in both numerator and denominator.

4 Application to surrogate reactions

In this section we apply the results of the previous sections to the analysis of surrogate reac-
tions. We begin with the Hauser-Feshbach formulation. We wish to obtain the compound-
nuclear part of a cross section for a reaction from a channel a to a channel b, which is given
by Eq. 19 in the form

σab =
∑

JΠ

Fa
JΠ(Ecmpd) Gb

JΠ(Ecmpd), (33)

where the target in the incident channel a is in general unstable. However, we can make
the highly excited compound nucleus Y ∗ in another reaction X(x, y)Y ∗, with an angle- and
energy-differential cross section

dσXY

dΩydEcmpd
( ~kx, ~ky) =

∑

JΠ

dσJΠ
XY

dΩydEcmpd
( ~kx, ~ky), (34)

where the left-hand side is the experimentally observable cross section, and the right-hand
side is the decomposition of the observable cross section into cross sections leaving the
compound nucleus Y ∗ in specific angular momentum and parity values J and Π. This
decomposition must be provided by a reaction model calculation. We assume that the final
state of the reaction X(x, y)Y ∗ is a fully equilibrated compound nucleus. This assumption
requires careful examination, which is beyond the scope of this tutorial. We define the
probability that X(x, y)Y ∗ forms Y ∗ with the quantum numbers JΠ as

Fsurr
JΠ =

dσJΠ
XY

dΩydEcmpd

/∑

J ′Π′

dσJ ′Π′
XY

dΩydEcmpd
. (35)

In the surrogate technique, the outgoing particle y is measured in coincidence with the
same outgoing particle that appears as the outgoing particle in channel b in the desired reac-
tion of Eq. 33. The experimentally observable probability of this coincidence (appropriately
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corrected for solid angle and efficiency) is

P surr
b =

∑

JΠ

Fsurr
JΠ (Ecmpd) Gb

JΠ(Ecmpd). (36)

The particle in channel b observed in coincidence with y may decay to either specific final
states or a distribution of states; the desired reaction Eq. 33 must be interpreted accordingly.
A specific example relevant to experiments currently under way is the observation of gammas
following neutron emission from the compound nucleus, observed in coincidence with α
particles in reactions of the type X(3He,α)Y . In this case b represents neutron emission to
all energetically available final states, and the gammas are a measure of the cross section for
emission of these neutrons when properly interpreted with a model for the gamma cascades
leading to the observed gammas. Another example is the observation of fission fragments in
coincidence with the outgoing particle in a reaction that populates the fissioning nucleus. In
this case also, b is a distribution of final states, represented by the transition states built on
the saddle-point configuration of the fissioning system.

Eqs. 33 and 36 are the Hauser-Feshbach formulation of the surrogate reaction problem.
These expressions contain the same branching ratios Gb

JΠ, but they are weighted differently
because the JΠ distributions are different in the two reactions. In fact, the difference in these
distributions may be very great. An extreme case is the use of the surrogate technique to
determine a low-energy (n, γ) reaction, since the neutron will deposit very little angular mo-
mentum in the compound nucleus compared with that typically brought in by the X(x, y)Y ∗

reaction. The main theoretical challenge in interpreting a surrogate reaction measurement is
to determine the angular-momentum decomposition probabilities Fsurr

JΠ and branching ratios
Gb

JΠ in Eq. 36 accurately. If these are well determined, the branching ratios can be inserted
in Eq. 33 to yield the desired cross section. Note that the coincidence probabilities P surr

b

are the only experimental results available to help in this determination. It is particularly
desirable for experiments to be carried out over a wide range of angles in the X(x, y)Y ∗

reaction, since the probabilities Fsurr
JΠ are angle-dependent, and obtaining the same σab for

the various angles provides an important consistency check on the procedure.
If the branching ratios Gb

JΠ are independent of J and Π, we are in the Weisskopf-Ewing
limit and the analysis simplifies significantly. The conditions that allow this simplification
were discussed in the previous section. In particular, it is important that the particles in
channel b populate a wide distribution of final states. From Eqs. 17 and 35 the sums over
the FJΠ factors are ∑

JΠ

Fa
JΠ = σreac

a (37)

and ∑

JΠ

Fsurr
JΠ = 1. (38)

Then Eqs. 33 and 36 simplify to
σab = σreac

a Gb (39)

and
P surr

b = Gb. (40)
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Comparison of the last two expressions yields the simple result

σab = σreac
a P surr

b , (41)

which is entirely independent of the branching ratios. The desired cross section is expressed
as the product of an experimental quantity, the measured coincidence probability, and a
reaction cross section that can be calculated with an optical model to a few percent accuracy.

The Weisskopf-Ewing result provides a useful prescription for preliminary analysis of a
surrogate experiment, which may be quite accurate when the conditions for its validity are
satisfied. The full Hauser-Feshbach analysis appears to be highly model dependent, but
this model dependence may be weak if the conditions for validity of the Weisskopf-Ewing
formalism are even approximately satisfied, since most of the model dependence drops out
in the latter approach. This tentatively positive conclusion needs to be tested for each
surrogate reaction by appropriate sensitivity studies, such as by varying the JΠ distribution
of the population parameters in Eq. 36.

It should be pointed out that the surrogate reaction technique considered above can
only determine the equilibrium portion of the desired reaction, since the assumption of a
long-lived, fully equilibrated compound nucleus is fundamental to the analysis. Therefore
any necessary preequilibrium component must be calculated separately and added to the
cross section resulting from the surrogate reaction analysis. For reactions with neutrons
up to 10 or 20 MeV the preequilibrium component is no larger than about 20%, and thus
determining the preequilibrium component with standard techniques tuned to systematics
in nearby nuclei may not contribute excessively to the overall error.

Analyzing a surrogate reaction by Eq. 36 requires a suitably modified Hauser-Feshbach
code. Modifying STAPRE, a code routinely used for reaction calculations at Livermore, will
not be difficult. This code has an array that contains the compound-nuclear cross sections
Fa

JΠ produced by the incident particle. These values can be replaced by the probabilities
Fsurr

JΠ , and the transmission coefficients for the incident particle can be set to zero so that
they play no role in the Hauser-Feshbach denominators. The modified code should then
be fully adequate for the surrogate reaction analysis, including the possibility of including
width-fluctuation corrections and the ability to calculate gamma cascades when necessary.
Similar modifications should be possible with other codes.
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